

TSWAP
SECURITY AUDIT REPORT::2024-01-18

Prepared by 808Nestor
NESTOR@SAFIRAETHER.COM

SAFIRAETHER.COM
SAFEGUARDING ETHEREUM

TSWAP

Page 1 of 20

TABLE OF CONTENTS

Table of Contents .. 1

Introduction .. 1

About The Protocol .. 1

Audit Scope .. 2

Audit Roles ... 2

Known Issues ... 2

Disclaimer .. 3

Methodology .. 4

Risk Classifications .. 5

Findings ... 9

Executive Summary ... 9

Critical Severity Findings ... 11

High Severity Findings ... 13

Medium Severity Findings .. 17

Low Severity Findings .. 17

Informational Level Findings .. 17

Conclusion ... 18

Appendices .. 19

TSWAP

Page 1 of 20

INTRODUCTION

ABOUT THE PROTOCOL
PROTOCOL OBJECTIVE
This project is meant to be a permissionless way for users to swap assets between each other at a
fair price. You can think of T-Swap as a decentralized asset/token exchange (DEX). T-Swap is known
as an Automated Market Maker (AMM) because it doesn't use a normal "order book" style exchange,
instead it uses "Pools" of an asset. It is like Uniswap.

The protocol starts as simply a PoolFactory contract. This contract is used to create new "pools" of
tokens. It helps make sure every pool token uses the correct logic. But all the magic is in each
TSwapPool contract.

You can think of each TSwapPool contract as it's own exchange between exactly 2 assets. Any ERC20
and the WETH token. These pools allow users to permissionlessly swap between an ERC20 that has
a pool and WETH. Once enough pools are created, users can easily "hop" between supported ERC20s.

SOLC VERSION
0.8.20

CHAINS
Ethereum

TOKENS
Any ERC20 token

TSWAP

Page 2 of 20

AUDIT SCOPE
COMMIT HASH
e643a8d4c2c802490976b538dd009b351b1c8dda

FILES IN SCOPE
./src/
#-- PoolFactory.sol
#-- TSwapPool.sol

AUDIT ROLES
1. Liquidity Providers: Users who have liquidity deposited into the pools. Their shares are

represented by the LP ERC20 tokens. They gain a 0.3% fee every time a swap is made.
2. Users: Users who want to swap tokens.

KNOWN ISSUES
None

TSWAP

Page 3 of 20

DISCLAIMER
All actions by The Audit Team in this project adhere to the agreed statement of work and project plan.

Security assessments are time-limited and rely on client-provided information. The findings in this report

may not cover all security issues in the target system or codebase.

Automated testing supplements manual security reviews but has limitations. Tools may not cover all

edge cases within the allocated time. This audit doesn't replace functional tests or guarantee identifying

all security issues, emphasizing the need for multiple audits and a bug bounty program.

This report isn't investment advice and is subject to the terms of the Services Agreement. Distribution

or reliance by any party other than the designated client is prohibited without prior written consent.

It neither endorses nor disapproves of any project, providing no insight into economic value or legal

compliance. Users access services at their risk, acknowledging uncertainties of cryptographic tokens

and blockchain technology.

The assessment may not uncover all vulnerabilities, and the absence of identified issues doesn't ensure

a secure system. The Audit Team focuses on source code assessments, acknowledging software

development limitations and potential impacts of third-party infrastructure.

The Audit Team, dedicated to discovering vulnerabilities within a timeframe, doesn't assume

responsibility for findings outlined in this document. The audit solely addresses solidity implementation,

not endorsing the underlying business. Recognizing time constraints, it exclusively focuses on the

security aspects of the assessed code.

TSWAP

Page 4 of 20

METHODOLOGY
Our audit methodology focused on ensuring the security, reliability, and adherence to best practices in
the context of the Ethereum blockchain.

BUSINESS LOGIC ASSESSMENT
Our analysis commenced with a thorough understanding of the smart contract's business logic. The
goal was to identify the core functionalities and interactions with external components, laying the
foundation for subsequent evaluations.

MANUAL CODE REVIEW
A meticulous review of the Solidity source code was conducted, adhering to industry best practices and
coding standards. The purpose was to identify potential vulnerabilities, ensuring the code is robust and
maintainable.

AUTOMATED ANALYSIS
Advanced automated analysis tools, including Aderyn, and Slither, were employed to identify common
vulnerabilities related to security, gas efficiency, and code style. The results contributed to a
comprehensive understanding of potential risks. Additionally, testing of invariants was conducted where
appropriate via fuzzing and formal verification using tools such as Halmos and Certora.

SECURITY PATTERNS APPLICATION
Security patterns and anti-patterns were applied to address common vulnerabilities, including
reentrancy, overflow/underflow, and timestamp dependency. Access controls and permissions were
implemented judiciously to enhance overall security.

EXTERNAL CALLS EVALUATION
External calls to other contracts or external systems were scrutinized to mitigate the risk of reentrancy
attacks. The assessment ensured that all calls were secure and aligned with the integrity of the contract.

INPUT VALIDATION
Rigorous validation of user inputs was conducted to ensure the smart contract gracefully handles
unexpected inputs, guarding against vulnerabilities such as integer overflow and underflow.

TSWAP

Page 5 of 20

RISK CLASSIFICATIONS
Risk is classified based on two factors: likelihood and impact.

LIKELIHOOD
Likelihood refers to the probability of a specific event or vulnerability being exploited. Here's an
elaboration on the three levels of likelihood:

HIGH LIKELIHOOD:
In situations of high likelihood, the conditions for exploitation are readily accessible or the attack vector
is easily achievable. The vulnerability is considered highly exploitable, and the likelihood of occurrence
is relatively high.

Example Scenario: A scenario where a hacker can directly call a function to cause a significant impact
on the smart contract's behavior. This could involve straightforward and easily executable steps that
do not require elaborate conditions.

MEDIUM LIKELIHOOD:
In cases of medium likelihood, specific conditions or a more constrained set of circumstances are
required for the vulnerability to be exploited. While not as easily achievable as high likelihood scenarios,
the conditions for exploitation are still reasonably attainable, making the event moderately likely to occur.

Example Scenario: An example could be a vulnerability that depends on the use of a particular type of
token within the platform. While not universally applicable, the conditions for exploitation are plausible
and could occur under specific circumstances.

LOW LIKELIHOOD:
Vulnerabilities with low likelihood are associated with rare situations that are unlikely to happen in
typical scenarios. Although technically feasible, the conditions required for exploitation are infrequent
or involve a combination of events that are unlikely to align.

Example Scenario: Consider a vulnerability that relies on a unique sequence of events (A, B, C) taking
place at a specific time. While technically possible, the occurrence of such a sequence is rare and
unlikely, making the exploitation of the vulnerability less probable.

TSWAP

Page 6 of 20

NOTE:
Computationally Unfeasible: Events that are 'computationally unfeasible' are practically impossible due
to their extreme rarity or the astronomical computational effort required for exploitation. These are not
considered viable attack paths in practice.

Assessing likelihood involves a degree of subjectivity and requires a comprehensive understanding of
the smart contract's architecture, the blockchain environment, and potential threat vectors. Regular
reviews and updates to likelihood assessments should be conducted to adapt to changes in the threat
landscape and the evolving nature of decentralized applications.

IMPACT
Impact is a crucial aspect of vulnerability assessment, representing the potential harm or consequences
resulting from a vulnerability. Here are the three levels of impact:

HIGH IMPACT:
High impact vulnerabilities pose a significant threat to the protocol, where funds are directly or nearly
directly at risk. The consequences involve a severe disruption of protocol functionality or availability,
with potential financial losses for users.

Examples:

• Direct exposure of funds to unauthorized access.
• Severe disruption in the protocol's core functionality, leading to financial losses.

MEDIUM IMPACT:
Medium impact vulnerabilities introduce some level of risk to funds, albeit indirectly. While not as severe
as high impact scenarios, these vulnerabilities can still result in disruptions to the protocol's functionality
or availability, impacting the user experience and potentially leading to financial consequences.

Examples:

• Indirect risk to funds due to a vulnerability that affects the integrity of transactions or user
accounts.

• Moderate disruption in protocol functionality, affecting user interactions and potentially leading
to financial consequences.

TSWAP

Page 7 of 20

LOW IMPACT:
Low impact vulnerabilities do not directly put funds at risk. However, there might be issues related to
the correctness of functions, inappropriate handling of states, or other non-financial implications. The
primary concern is related to the correctness and reliability of the protocol rather than immediate
financial losses.

Examples:

• Correctness issues in specific functions that do not pose a direct threat to funds but may impact
the overall reliability of the protocol.

• State handling concerns that do not immediately impact financial transactions but may affect the
protocol's overall performance.

Assessing impact is crucial for prioritizing the resolution of vulnerabilities and allocating resources
effectively. It helps in understanding the potential consequences of each vulnerability and guides the
development team in addressing the most critical issues first, ensuring the overall security and stability
of the protocol. Regular impact assessments should be conducted to adapt to changes in the protocol's
features and user interactions.

SEVERITY RATINGS
Severity ratings in the context of smart contract security assessments are typically derived from the
combination of likelihood and impact assessments. Here are the severity ratings based on the provided
likelihood and impact descriptions:

Im
pa

ct
 High MEDIUM HIGH CRITICAL

Medium LOW MEDIUM HIGH

Low LOW LOW MEDIUM

 Low Medium High

 Likelihood

CRITICAL SEVERITY:
• High Likelihood + High Impact

Vulnerabilities with a critical severity rating represent a high likelihood of exploitation coupled with
significant consequences. In these scenarios, funds are directly at risk, and there's a severe disruption
of protocol functionality or availability, posing a substantial threat to users and the overall integrity of
the protocol.

TSWAP

Page 8 of 20

HIGH SEVERITY:
• Medium Likelihood + High Impact
• High Likelihood + Medium Impact

High severity vulnerabilities indicate a substantial risk to the protocol. While the likelihood may be high
or medium, the impact is never low, with the potential for direct financial losses and severe disruption
of protocol functionality. These vulnerabilities demand immediate attention and remediation efforts.

MEDIUM SEVERITY:
• Low Likelihood + High Impact
• Medium Likelihood + Medium Impact
• High Likelihood + Low Impact

Medium severity vulnerabilities pose a moderate risk to the protocol. While the likelihood of exploitation
and the impact may vary, the potential for indirect financial risks and disruptions to the protocol's
functionality remains constant. Timely remediation is recommended to maintain the overall security and
stability of the system.

LOW SEVERITY:
• Low Likelihood + Low Impact
• Low Likelihood + Medium Impact
• Medium Likelihood + Low Impact

Low severity vulnerabilities represent a lower risk to the protocol. The likelihood of exploitation is low
or medium, and the impact may be low or medium, primarily related to correctness issues or non-
financial implications. While these vulnerabilities are not immediate threats, they should still be
addressed in a timely manner to enhance the robustness of the protocol.

INFORMATIONAL SEVERITY:
• Likelihood: Not Applicable
• Impact: Not Applicable

Informational severity is used for findings that provide valuable information but do not pose an
immediate risk to the protocol's security or functionality. These findings may include suggestions for
improvement or best practices that could enhance the overall security posture.

TSWAP

Page 9 of 20

FINDINGS

EXECUTIVE SUMMARY
OVERVIEW
In the TSwap smart contract audit, several critical findings have been identified.

First, in the TSwapPool's deposit function, a crucial deadline check is missing, allowing transactions to
complete even after the specified deadline. This could pose a significant problem if users add money
to the pool at unexpected times, especially when market conditions are unfavorable for making deposits.

Additionally, there's an issue with fee calculation in the TSwapPool, where the
getInputAmountBasedOnOutput function multiplies the fee amount by 10,000 instead of the correct
value, 1,000, resulting in the protocol taking too many tokens from users and causing them to lose more
fees than intended.

Furthermore, the swapExactOutput function in TSwapPool lacks slippage protection, potentially leading
users to receive significantly fewer tokens than expected if market conditions change during the
transaction.

Finally, the sellPoolTokens function suffers from a mismatch between input and output tokens, causing
users to receive an incorrect number of tokens when selling pool tokens. These critical issues need
urgent attention to ensure the security and functionality of the TSwap protocol.

TSWAP

Page 10 of 20

FINDINGS BY SEVERITY TALLY TABLE
Severity Tally
Critical 2
High 2
Medium 0
Low 0
Info 0
TOTAL 4

FINDINGS BY SEVERITY TALLY CHART

Critical
50%

High
50%

Medium
0%
Low
0%
Info
0%

FINDINGS BY SEVERITY

TSWAP

Page 11 of 20

CRITICAL SEVERITY FINDINGS
C-01: MISSING DEADLINE PARAMETER IN TSWAPPOOL::DEPOSIT RESULTS IN ALLOWING

TRANSACTIONS TO COMPLETE AFTER DEADLINE.
File: TSwapPool

Element: deposit()

Likelihood: High

Financial Impact: High

Severity: Critical

DETAILS
The TSwapPool's deposit feature has a flaw. It doesn't check the deadline, which is like a
time limit for the transaction to finish. The issue is that even if a deadline exists, the
function is unaware of it. This means that when people are adding money to the pool, it
might happen at times they don't expect. This could be a problem if the market
conditions are not favorable for making deposits.

IMPACT
The impact of this issue is that people could lose money if they are not careful. If the
market conditions are not favorable, they could lose money.

PROOF OF CONCEPT

The deadline parameter is unused.

TOOLS USED
Manual

RECOMMENDATIONS
Add a deadline parameter to the deposit function.

TSWAP

Page 12 of 20

C-02: INCORRECT FEE CALCULATION IN TSWAPPOOL::GETINPUTAMOUNTBASEDONOUTPUT

RESULTS IN LOST FEES.
File: TSwapPool

Element: getInputAmountBasedOnOutput()

Likelihood: High

Financial Impact: High

Severity: Critical

DETAILS
There's an issue with the way fees are calculated in the TSwapPool. The function called
getInputAmountBasedOnOutput is supposed to figure out how many tokens a user needs
to deposit based on the amount of output tokens they want. However, there's a mistake in
the calculation. When it comes to figuring out the fee, it multiplies the amount by 10,000
instead of the correct value, which is 1,000. This mistake means that the protocol is taking
too many tokens from users, and as a result, users are losing more fees than they should.

IMPACT
The impact of this issue is that users are losing more fees than they should.

PROOF OF CONCEPT

return ((inputReserves * outputAmount) * 10_000) / ((outputReserves - outputAmount) * 997);

TOOLS USED
Manual

RECOMMENDATIONS
Change the 10,000 to 1,000 in the getInputAmountBasedOnOutput function.

TSWAP

Page 13 of 20

HIGH SEVERITY FINDINGS
H-01: LACK OF SLIPPAGE PROTECTION IN TSWAPPOOL::SWAPEXACTOUTPUT RESULTS IN

LOST FUNDS.
File: TSwapPool

Element: swapExactOutput()

Likelihood: Medium

Financial Impact: High

Severity: High

DETAILS
There's a problem with the swap function in TSwapPool. Specifically, the
swapExactOutput function doesn't have any

 protection against slippage. In simpler terms, slippage protection helps users from
getting significantly fewer

 tokens than expected. Here's what happens: When users execute swapExactOutput,
the function doesn't set a maximum amount for the input tokens. This is important
because if market conditions change before the transaction is complete, users might
end up

 with a much worse deal than they anticipated.

IMPACT
The impact of this issue is that users could lose money. If

market conditions change before the transaction is complete, users could end up with a
much worse deal than they anticipated.

TSWAP

Page 14 of 20

PROOF OF CONCEPT

1. The price of 1 WETH right now is 1,000 USDC
2. User inputs a swapExactOutput looking for 1 WETH

i. inputToken = USDC
ii. outputToken = WETH
iii. outputAmount = 1
iv. deadline = whatever

3. The function does not offer a maxInput amount
4. As the transaction is pending in the mempool, the market changes! And the price moves

HUGE -> 1 WETH is now 10,000 USDC. 10x more than the user expected
5. The transaction completes, but the user sent the protocol 10,000 USDC instead of the

expected 1,000 USDC

TOOLS USED
Manual

RECOMMENDATIONS
Add slippage protection to the swapExactOutput function by specifying a maximum
input amount.

 function swapExactOutput(
 IERC20 inputToken,
+ uint256 maxInputAmount,
.
.
.
 inputAmount = getInputAmountBasedOnOutput(outputAmount, inputReserves,
outputReserves);
+ if(inputAmount > maxInputAmount){
+ revert();
+ }
 _swap(inputToken, inputAmount, outputToken, outputAmount);

TSWAP

Page 15 of 20

H-02: MISMATCH BETWEEN INPUT AND OUTPUT IN TSWAPPOOL::SELLPOOLTOKENS RESULTS

IN LOST FUNDS.
File: TSwapPool

Element: sellPoolTokens()

Likelihood: Medium

Financial Impact: High

Severity: High

DETAILS
In the TSwapPool contract, the sellPoolTokens function is designed to simplify the
process for users looking to sell pool tokens and receive WETH in return.

However, there is an issue causing a mismatch between the input and output tokens,
leading users to receive an incorrect amount. The problem arises from using the
swapExactOutput function instead of the appropriate swapExactInput function.

In this context, users specify the number of pool tokens they want to sell (input), but the
function incorrectly calculates the swapped amount as if users were specifying the exact
amount of output tokens.

IMPACT
This discrepancy results in users swapping an incorrect amount of tokens, significantly
disrupting the functionality of the protocol.

PROOF OF CONCEPT

return swapExactOutput(i_poolToken, i_wethToken, poolTokenAmount, uint64(block.timestamp));

TOOLS USED
Manual

TSWAP

Page 16 of 20

RECOMMENDATIONS
Modify the sellPoolTokens function to use the swapExactInput function, ensuring
accurate token swaps for users. In other words, use the swapExactInput function instead
of swapExactOutput.

 function sellPoolTokens(
 uint256 poolTokenAmount,
+ uint256 minWethToReceive,
) external returns (uint256 wethAmount) {
- return swapExactOutput(i_poolToken, i_wethToken, poolTokenAmount,
uint64(block.timestamp));
+ return swapExactInput(i_poolToken, poolTokenAmount, i_wethToken,
minWethToReceive, uint64(block.timestamp));
 }

TSWAP

Page 17 of 20

MEDIUM SEVERITY FINDINGS
N/A

LOW SEVERITY FINDINGS
N/A

INFORMATIONAL LEVEL FINDINGS
N/A

TSWAP

Page 18 of 20

CONCLUSION

In conclusion, the smart contract audit for TSwap has revealed several critical findings that demand
immediate attention.

The TSwapPool's deposit function lacks a crucial deadline check, allowing transactions to complete
after the specified deadline, potentially causing issues when users add funds to the pool.

Additionally, the TSwapPool's fee calculation in the getInputAmountBasedOnOutput function is flawed,
multiplying the fee amount by 10,000 instead of the correct value, leading to users losing more fees
than intended.

Furthermore, the swapExactOutput function in TSwapPool lacks slippage protection, potentially
resulting in users receiving significantly fewer tokens than expected if market conditions change during
the transaction.

Lastly, the sellPoolTokens function suffers from a mismatch between input and output tokens, causing
users to receive an incorrect number of tokens when selling pool tokens.

These critical issues pose a substantial risk to the functionality and security of the TSwap protocol and
require immediate corrective measures to ensure the integrity of the platform.

TSWAP

Page 19 of 20

APPENDICES

N/A

