

PASSWORDSTORE
SECURITY AUDIT REPORT::2023-12-27

Prepared by 808Néstor
NESTOR@SAFIRAETHER.COM

SAFIRAETHER.COM
SAFEGUARDING ETHEREUM

PASSWORDSTORE

Page 1 of 19

TABLE OF CONTENTS

Table of Contents ... 1

Introduction .. 2

About The Protocol ... 2

Audit Scope .. 3

Audit Roles ... 3

Known Issues ... 3

Disclaimer ... 4

Methodology ... 5

Risk Classifications ... 6

Findings .. 10

Executive Summary .. 10

Critical Severity Findings .. 12

High Severity Findings .. 16

Medium Severity Findings .. 16

Low Severity Findings .. 16

Informational Level Findings ... 17

Conclusion ... 18

Appendices .. 19

Appendix A: PasswordStore Storage ... 19

PASSWORDSTORE

Page 2 of 19

INTRODUCTION

ABOUT THE PROTOCOL
PROTOCOL OBJECTIVE
A smart contract applicatoin for storing a password. Users should be able to store a password and
then retrieve it later. Others should not be able to access the password.

SOLC VERSION
0.8.18

CHAINS
Ethereum

TOKENS
N/A

PASSWORDSTORE

Page 3 of 19

AUDIT SCOPE
COMMIT HASH
7d55682ddc4301a7b13ae9413095feffd9924566

FILES IN SCOPE
./src/

└── PasswordStore.sol

AUDIT ROLES
• Owner: The user who can set the password and read the password.
• Outsides: No one else should be able to set or read the password.

KNOWN ISSUES
N/A

PASSWORDSTORE

Page 4 of 19

DISCLAIMER
All actions by The Audit Team in this project adhere to the agreed statement of work and project plan.

Security assessments are time-limited and rely on client-provided information. The findings in this report

may not cover all security issues in the target system or codebase.

Automated testing supplements manual security reviews but has limitations. Tools may not cover all

edge cases within the allocated time. This audit doesn't replace functional tests or guarantee identifying

all security issues, emphasizing the need for multiple audits and a bug bounty program.

This report isn't investment advice and is subject to the terms of the Services Agreement. Distribution

or reliance by any party other than the designated client is prohibited without prior written consent.

It neither endorses nor disapproves of any project, providing no insight into economic value or legal

compliance. Users access services at their risk, acknowledging uncertainties of cryptographic tokens

and blockchain technology.

The assessment may not uncover all vulnerabilities, and the absence of identified issues doesn't ensure

a secure system. The Audit Team focuses on source code assessments, acknowledging software

development limitations and potential impacts of third-party infrastructure.

The Audit Team, dedicated to discovering vulnerabilities within a timeframe, doesn't assume

responsibility for findings outlined in this document. The audit solely addresses solidity implementation,

not endorsing the underlying business. Recognizing time constraints, it exclusively focuses on the

security aspects of the assessed code.

PASSWORDSTORE

Page 5 of 19

METHODOLOGY
Our audit methodology focused on ensuring the security, reliability, and adherence to best practices in
the context of the Ethereum blockchain.

BUSINESS LOGIC ASSESSMENT
Our analysis commenced with a thorough understanding of the smart contract's business logic. The
goal was to identify the core functionalities and interactions with external components, laying the
foundation for subsequent evaluations.

MANUAL CODE REVIEW
A meticulous review of the Solidity source code was conducted, adhering to industry best practices and
coding standards. The purpose was to identify potential vulnerabilities, ensuring the code is robust and
maintainable.

AUTOMATED ANALYSIS
Advanced automated analysis tools, including Aderyn, and Slither, were employed to identify common
vulnerabilities related to security, gas efficiency, and code style. The results contributed to a
comprehensive understanding of potential risks. Additionally, testing of invariants was conducted where
appropriate via fuzzing and formal verification using tools such as Halmos and Certora.

SECURITY PATTERNS APPLICATION
Security patterns and anti-patterns were applied to address common vulnerabilities, including
reentrancy, overflow/underflow, and timestamp dependency. Access controls and permissions were
implemented judiciously to enhance overall security.

EXTERNAL CALLS EVALUATION
External calls to other contracts or external systems were scrutinized to mitigate the risk of reentrancy
attacks. The assessment ensured that all calls were secure and aligned with the integrity of the contract.

INPUT VALIDATION
Rigorous validation of user inputs was conducted to ensure the smart contract gracefully handles
unexpected inputs, guarding against vulnerabilities such as integer overflow and underflow.

PASSWORDSTORE

Page 6 of 19

RISK CLASSIFICATIONS
Risk is classified based on two factors: likelihood and impact.

LIKELIHOOD
Likelihood refers to the probability of a specific event or vulnerability being exploited. Here's an
elaboration on the three levels of likelihood:

HIGH LIKELIHOOD:
In situations of high likelihood, the conditions for exploitation are readily accessible or the attack vector
is easily achievable. The vulnerability is considered highly exploitable, and the likelihood of occurrence
is relatively high.

Example Scenario: A scenario where a hacker can directly call a function to cause a significant impact
on the smart contract's behavior. This could involve straightforward and easily executable steps that
do not require elaborate conditions.

MEDIUM LIKELIHOOD:
In cases of medium likelihood, specific conditions or a more constrained set of circumstances are
required for the vulnerability to be exploited. While not as easily achievable as high likelihood scenarios,
the conditions for exploitation are still reasonably attainable, making the event moderately likely to occur.

Example Scenario: An example could be a vulnerability that depends on the use of a particular type of
token within the platform. While not universally applicable, the conditions for exploitation are plausible
and could occur under specific circumstances.

LOW LIKELIHOOD:
Vulnerabilities with low likelihood are associated with rare situations that are unlikely to happen in
typical scenarios. Although technically feasible, the conditions required for exploitation are infrequent
or involve a combination of events that are unlikely to align.

Example Scenario: Consider a vulnerability that relies on a unique sequence of events (A, B, C) taking
place at a specific time. While technically possible, the occurrence of such a sequence is rare and
unlikely, making the exploitation of the vulnerability less probable.

PASSWORDSTORE

Page 7 of 19

NOTE:
Computationally Unfeasible: Events that are 'computationally unfeasible' are practically impossible due
to their extreme rarity or the astronomical computational effort required for exploitation. These are not
considered viable attack paths in practice.

Assessing likelihood involves a degree of subjectivity and requires a comprehensive understanding of
the smart contract's architecture, the blockchain environment, and potential threat vectors. Regular
reviews and updates to likelihood assessments should be conducted to adapt to changes in the threat
landscape and the evolving nature of decentralized applications.

IMPACT
Impact is a crucial aspect of vulnerability assessment, representing the potential harm or consequences
resulting from a vulnerability. Here are the three levels of impact:

HIGH IMPACT:
High impact vulnerabilities pose a significant threat to the protocol, where funds are directly or nearly
directly at risk. The consequences involve a severe disruption of protocol functionality or availability,
with potential financial losses for users.

Examples:

• Direct exposure of funds to unauthorized access.
• Severe disruption in the protocol's core functionality, leading to financial losses.

MEDIUM IMPACT:
Medium impact vulnerabilities introduce some level of risk to funds, albeit indirectly. While not as severe
as high impact scenarios, these vulnerabilities can still result in disruptions to the protocol's functionality
or availability, impacting the user experience and potentially leading to financial consequences.

Examples:

• Indirect risk to funds due to a vulnerability that affects the integrity of transactions or user
accounts.

• Moderate disruption in protocol functionality, affecting user interactions and potentially leading
to financial consequences.

PASSWORDSTORE

Page 8 of 19

LOW IMPACT:
Low impact vulnerabilities do not directly put funds at risk. However, there might be issues related to
the correctness of functions, inappropriate handling of states, or other non-financial implications. The
primary concern is related to the correctness and reliability of the protocol rather than immediate
financial losses.

Examples:

• Correctness issues in specific functions that do not pose a direct threat to funds but may impact
the overall reliability of the protocol.

• State handling concerns that do not immediately impact financial transactions but may affect the
protocol's overall performance.

Assessing impact is crucial for prioritizing the resolution of vulnerabilities and allocating resources
effectively. It helps in understanding the potential consequences of each vulnerability and guides the
development team in addressing the most critical issues first, ensuring the overall security and stability
of the protocol. Regular impact assessments should be conducted to adapt to changes in the protocol's
features and user interactions.

SEVERITY RATINGS
Severity ratings in the context of smart contract security assessments are typically derived from the
combination of likelihood and impact assessments. Here are the severity ratings based on the provided
likelihood and impact descriptions:

Im
pa

ct
 High MEDIUM HIGH CRITICAL

Medium LOW MEDIUM HIGH

Low LOW LOW MEDIUM

 Low Medium High

 Likelihood

CRITICAL SEVERITY:
• High Likelihood + High Impact

Vulnerabilities with a critical severity rating represent a high likelihood of exploitation coupled with
significant consequences. In these scenarios, funds are directly at risk, and there's a severe disruption
of protocol functionality or availability, posing a substantial threat to users and the overall integrity of
the protocol.

PASSWORDSTORE

Page 9 of 19

HIGH SEVERITY:
• Medium Likelihood + High Impact
• High Likelihood + Medium Impact

High severity vulnerabilities indicate a substantial risk to the protocol. While the likelihood may be high
or medium, the impact is never low, with the potential for direct financial losses and severe disruption
of protocol functionality. These vulnerabilities demand immediate attention and remediation efforts.

MEDIUM SEVERITY:
• Low Likelihood + High Impact
• Medium Likelihood + Medium Impact
• High Likelihood + Low Impact

Medium severity vulnerabilities pose a moderate risk to the protocol. While the likelihood of exploitation
and the impact may vary, the potential for indirect financial risks and disruptions to the protocol's
functionality remains constant. Timely remediation is recommended to maintain the overall security and
stability of the system.

LOW SEVERITY:
• Low Likelihood + Low Impact
• Low Likelihood + Medium Impact
• Medium Likelihood + Low Impact

Low severity vulnerabilities represent a lower risk to the protocol. The likelihood of exploitation is low
or medium, and the impact may be low or medium, primarily related to correctness issues or non-
financial implications. While these vulnerabilities are not immediate threats, they should still be
addressed in a timely manner to enhance the robustness of the protocol.

INFORMATIONAL SEVERITY:
• Likelihood: Not Applicable
• Impact: Not Applicable

Informational severity is used for findings that provide valuable information but do not pose an
immediate risk to the protocol's security or functionality. These findings may include suggestions for
improvement or best practices that could enhance the overall security posture.

Severity ratings provide a structured way to prioritize and communicate the urgency of addressing
identified vulnerabilities.

PASSWORDSTORE

Page 10 of 19

FINDINGS

EXECUTIVE SUMMARY
OVERVIEW
In the comprehensive audit of the smart contract, two critical findings, denoted as C-01 and C-02, reveal
significant vulnerabilities with severe implications for the protocol's security. The first critical issue,
identified as "Sensitive Data On Chain," brings attention to a vulnerability that exposes the password
stored in the contract to potential exploitation. Despite the `PasswordStore::s_password` state variable
being marked as 'private,' it's crucial to recognize that all data on the blockchain, including supposedly
private information in smart contracts, is visible to anyone with the knowledge to query the blockchain's
state or analyze transaction histories. The consequence of this vulnerability is a direct compromise of
confidentiality. Moreover, if the compromised password is reused across other accounts, there exists
the risk of off-chain account compromises. For instance, if the password is employed in encrypting a
private key, an attacker could potentially decrypt the private key, leading to unauthorized access and
theft of funds.

The second critical finding, labeled as "Access control vulnerability" (C-02), sheds light on a significant
flaw in the contract's design. Specifically, the `PasswordStore::setPassword` function is marked as
'external,' implying that it can be executed by anyone, not solely the contract owner. This oversight
introduces a critical access control vulnerability, allowing any external entity to set the password at will.
Such unauthorized modification capability could lead to widespread abuse and manipulation of the
contract's critical information, posing a substantial threat to the integrity and intended functionality of
the protocol.

Beyond the critical issues, the audit also flagged informational findings, such as I-01, indicating areas
for improvement without posing an immediate and severe threat. In this case, the
`PasswordStore::getPassword` function features a parameter labeled `newPassword` that remains
unused within the function body. While not constituting a critical vulnerability, this informational finding
suggests potential inefficiencies or oversights in the codebase. Addressing such issues contributes to
the overall clarity, efficiency, and maintainability of the code.

The cumulative impact on the protocol is profound, with critical vulnerabilities directly jeopardizing data
confidentiality and access control. The "Sensitive Data On Chain" vulnerability exposes the password,
putting off-chain accounts at risk, while the "Access control vulnerability" compromises the integrity of
the contract itself. Addressing these critical issues is imperative to fortify the protocol against
unauthorized access, mitigate the potential for data breaches, and safeguard against financial losses
stemming from exploitation.

PASSWORDSTORE

Page 11 of 19

FINDINGS BY SEVERITY TALLY TABLE
Severity Tally
Critical 2
High 0
Medium 0
Low 0
Informational 1

FINDINGS BY SEVERITY TALLY CHART

Critical
67%

High
0%
Medium
0%Low

0%

Informational
33%

FINDINGS BY SEVERITY

PASSWORDSTORE

Page 12 of 19

CRITICAL SEVERITY FINDINGS
C-01: SENSITIVE DATA ON CHAIN VULNERABILITY ALLOWS ANYONE TO READ THE PASSWORD.
File: PasswordStore

Element: s_password

Likelihood: High

Financial Impact: High

Severity: Critical

DETAILS
`PasswordStore::s_password` state variable is marked 'private'. However, all data on the
blockchain, including that marked 'private' in smart contracts, is visible to anyone who
knows how to query the blockchain's state or analyze its transaction history. Private
variables are not exempt from public inspection.

IMPACT
Anyone can read the password stored in this contract. Resulting in a loss of confidentiality.
Futhermore, if the password is reused, ofchain accounts could be compromised. For
example, if the password is used to encrypt a private key, an attacker could decrypt the
private key and steal funds.

PROOF OF CONCEPT

Step 1: Identify Target of Attack
```   
# Confirm storage slot used for variable 's_password' using Sol2UML 
sol2uml class -f png -o ./audit-notes/recon/uml_classes.png ./src  
 
Results: See Appendix A 
``` 

Step 2: Initiate Attack
```   
 
# Spin up local chain for testing 
$ forge anvil 



PASSWORDSTORE  

  
 

Page 13 of 19 

 

 
# deploy contract according to project 
$ make deploy 
 
# Use Foundry's cast tool to read the data stored at the desirted slot 
# usage: cast storage <address> <storageSlot> 
cast storage 0x5FbDB2315678afecb367f032d93F642f64180aa3 1 
 
Results: `0x6d7950617373776f726400000000000000000000000000000000000000000014` 
 
# Use Foundry's cast tool to parse the bytes32 data into a text string 
cast parse-bytes32-string 
0x6d7950617373776f726400000000000000000000000000000000000000000014 
 
Results: `myPassword` 
``` 

Step 3: Confirm Results
```  
# Line 11 of project script 'DeployPasswordStore.s.sol': 
passwordStore.setPassword("myPassword"); 
``` 


TOOLS USED
Manual

RECOMMENDED MITIGATION
Given that the purpose of this contract is to store a password, it is not clear why the
password is stored on-chain. Consider storing the password off-chain, or using a hash of
the password instead of the password itself.

PASSWORDSTORE

Page 14 of 19

C-02: ACCESS CONTROL VULNERABILITY ALLOWS ANYONE TO SET THE PASSWORD.
File: PasswordStore

Element: setPassword

Likelihood: High

Financial Impact: High

Severity: Critical

DETAILS
`PasswordStore::setPassword` is marked 'external'. Functions marked "external" or "public"
can be executed by anyone, not just the owner of the contract.

IMPACT
Anyone can set the password.

PROOF OF CONCEPT

function test_anyone_can_set_password(address randomAddress) public {
 // assume randomAddress is not owner
 vm.assume(randomAddress != owner);

 // owner checks password
 vm.prank(owner);
 string memory startingPassword = passwordStore.getPassword();
 console.log("starting Password: %s", startingPassword);

 // attacker sets password from random address
 vm.prank(randomAddress);
 string memory attackerPassword = "newPasswordFromRandomAddress";
 passwordStore.setPassword(attackerPassword);
 console.log("attacker changes Password...");

 // owner checks password again
 vm.prank(owner);
 string memory actualPassword = passwordStore.getPassword();
 console.log("ending Password: %s", actualPassword);

 // owner sees that password has changed
 assertEq(actualPassword, attackerPassword);

PASSWORDSTORE

Page 15 of 19

 }

TOOLS USED
Manual

RECOMMENDED MITIGATION
This functions needs to be called externally by the owner of the contract. Therefore, use
require(msg.sender == s_owner) to restrict access to the owner. This will prevent anyone
else from setting the password.

PASSWORDSTORE

Page 16 of 19

HIGH SEVERITY FINDINGS
N/A

MEDIUM SEVERITY FINDINGS
N/A

LOW SEVERITY FINDINGS
N/A

PASSWORDSTORE

Page 17 of 19

INFORMATIONAL LEVEL FINDINGS
I-01: STATED PARAMETER IS NOT USED IN THE FUNCTION BODY.
File: PasswordStore

Element: getPassword

Likelihood: NA

Financial Impact: NA

Severity: Informational

DETAILS
`PasswordStore::getPassword` has a parameter `newPassword` that is not used in the
function body.

IMPACT
The parameter is not used in the function body, so it is not clear why it is there.

PROOF OF CONCEPT

N/A

TOOLS USED
Manual

RECOMMENDED MITIGATION
Remove the parameter `newPassword` from the function signature.

PASSWORDSTORE

Page 18 of 19

CONCLUSION

To address the critical vulnerabilities identified in the smart contract audit, specific mitigations are
recommended. For the "Sensitive Data On Chain" issue (C-01), it is advised to reassess the on-chain
storage approach for the password. Considering the contract's purpose is password storage, storing
the password off-chain or using a hash instead of the password itself can significantly enhance security.

As for the "Access control vulnerability" (C-02), it is crucial to restrict external access to the
`PasswordStore::setPassword` function. Adding a verification check, such as `require(msg.sender ==
s_owner)`, ensures only the contract owner can set the password, preventing unauthorized access.

Additionally, for the informational finding (I-01), removing the unused parameter `newPassword` from
the `PasswordStore::getPassword` function simplifies the code and enhances clarity.

Moving forward, adopting post-audit best practices is essential. Regularly conduct security reviews and
audits to stay ahead of potential vulnerabilities. Implement a robust testing strategy, including unit tests
and third-party audits, to ensure the continued resilience of the smart contract. Foster open
communication within the development community, addressing concerns and collaborating on security
best practices. Continuous learning and adaptation to evolving security standards are key to
maintaining the integrity of smart contracts.

Remember, we're in this together to create secure and reliable solutions. Let's keep the collaboration
going for a safer and more resilient smart contract ecosystem! 🌐🔒

PASSWORDSTORE

Page 19 of 19

APPENDICES

APPENDIX A: PASSWORDSTORE STORAGE

